Skip to content

Neonatal Medicine

Management of Anemia of Prematurity

Delayed Cord Clamping

Efficacy and safety of umbilical cord milking at birth: a systematic review and meta-analysis. (opens new window)

Al-Wassia H, Shah PS.

Source‎: JAMA Pediatr 2015;169(1):18-25.

Indexed‎: PubMed 25365246

DOI‎: 10.1001/jamapediatrics.2014.1906

https://www.ncbi.nlm.nih.gov/pubmed/25365246 (opens new window)

Effects of umbilical cord milking on the need for packed red blood cell transfusions and early neonatal hemodynamic adaptation in preterm infants born ≤1500 g: a prospective, randomized, controlled trial. (opens new window)

Alan S, Arsan S, Okulu E, Akin IM, Kilic A, Taskin S, Cetinkaya E, Erdeve O, Atasay B.

Source‎: J Pediatr Hematol Oncol 2014;36(8):e493-8.

Indexed‎: PubMed 24633297

DOI‎: 10.1097/MPH.0000000000000143

https://www.ncbi.nlm.nih.gov/pubmed/24633297 (opens new window)

Early versus delayed umbilical cord clamping in infants with congenital heart disease: a pilot, randomized, controlled trial. (opens new window)

Backes CH, Huang H, Cua CL, Garg V, Smith CV, Yin H, Galantowicz M, Bauer JA, Hoffman TM.

Source‎: J Perinatol 2015;35(10):826-31.

Indexed‎: PubMed 26226244

DOI‎: 10.1038/jp.2015.89

https://www.ncbi.nlm.nih.gov/pubmed/26226244 (opens new window)

Placental transfusion strategies in very preterm neonates: a systematic review and meta-analysis. (opens new window)

Backes CH, Rivera BK, Haque U, Bridge JA, Smith CV, Hutchon DJ, Mercer JS.

Source‎: Obstet Gynecol 2014;124(1):47-56.

Indexed‎: PubMed 24901269

DOI‎: 10.1097/AOG.0000000000000324

https://www.ncbi.nlm.nih.gov/pubmed/24901269 (opens new window)

Effect of delayed cord clamping on very preterm infants. (opens new window)

Chiruvolu A, Tolia VN, Qin H, Stone GL, Rich D, Conant RJ, Inzer RW.

Source‎: Am J Obstet Gynecol 2015;213(5):676.e1-7.

Indexed‎: PubMed 26196456

DOI‎: 10.1016/j.ajog.2015.07.016

https://www.ncbi.nlm.nih.gov/pubmed/26196456 (opens new window)

Whole-blood viscosity in the neonate: effects of gestational age, hematocrit, mean corpuscular volume and umbilical cord milking. (opens new window)

Christensen RD, Baer VL, Gerday E, Sheffield MJ, Richards DS, Shepherd JG, Snow GL, Bennett ST, Frank EL, Oh W.

Source‎: J Perinatol 2014;34(1):16-21.

Indexed‎: PubMed 24030677

DOI‎: 10.1038/jp.2013.112

https://www.ncbi.nlm.nih.gov/pubmed/24030677 (opens new window)

Umbilical cord milking reduces need for red cell transfusions and improves neonatal adaptation in preterm infants: meta-analysis. (opens new window)

Dang D, Zhang C, Shi S, Mu X, Lv X, Wu H.

Source‎: J Obstet Gynaecol Res 2015;41(6):890-5.

Indexed‎: PubMed 25656528

DOI‎: 10.1111/jog.12657

https://www.ncbi.nlm.nih.gov/pubmed/25656528 (opens new window)

Umbilical cord milking in term infants delivered by cesarean section: a randomized controlled trial. (opens new window)

Erickson-Owens DA, Mercer JS, Oh W.

Source‎: J Perinatol 2012;32(8):580-4.

Indexed‎: PubMed 22094494

DOI‎: 10.1038/jp.2011.159

https://www.ncbi.nlm.nih.gov/pubmed/22094494 (opens new window)

Umbilical cord milking reduces the need for red cell transfusions and improves neonatal adaptation in infants born at less than 29 weeks' gestation: a randomised controlled trial. (opens new window)

Hosono S, Mugishima H, Fujita H, Hosono A, Minato M, Okada T, Takahashi S, Harada K.

Source‎: Arch Dis Child Fetal Neonatal Ed 2008;93(1):F14-9.

Indexed‎: PubMed 17234653

DOI‎: 10.1136/adc.2006.108902

https://www.ncbi.nlm.nih.gov/pubmed/17234653 (opens new window)

Association of umbilical cord management strategies with outcomes of preterm infants: a systematic review and network meta-analysis. (opens new window)

Jasani B, Torgalkar R, Ye XY, Syed S, Shah PS

Source‎: JAMA Pediatr 2021;175(4):e210102.

Indexed‎: PubMed 33683307

DOI‎: 10.1001/jamapediatrics.2021.0102

https://www.ncbi.nlm.nih.gov/pubmed/33683307 (opens new window)

Clamp late and maintain perfusion (CLAMP) policy: delayed cord clamping in preterm infants. (opens new window)

Jelin AC, Zlatnik MG, Kuppermann M, Gregorich SE, Nakagawa S, Clyman R.

Source‎: J Matern Fetal Neonatal Med 2016;29(11):1705-9.

Indexed‎: PubMed 26135773

DOI‎: 10.3109/14767058.2015.1061496

https://www.ncbi.nlm.nih.gov/pubmed/26135773 (opens new window)

Delayed umbilical cord clamping in premature neonates. (opens new window)

Kaempf JW, Tomlinson MW, Kaempf AJ, Wu Y, Wang L, Tipping N, Grunkemeier G.

Source‎: Obstet Gynecol 2012;120(2 Pt 1):325-30.

Indexed‎: PubMed 22825092

DOI‎: 10.1097/AOG.0b013e31825f269f

https://www.ncbi.nlm.nih.gov/pubmed/22825092 (opens new window)

Neonatal resuscitation with an intact cord: a randomized clinical trial. (opens new window)

Katheria A, Poeltler D, Durham J, Steen J, Rich W, Arnell K, Maldonado M, Cousins L, Finer N.

Source‎: J Pediatr 2016;178:75-80.e3.

Indexed‎: PubMed 27574999

DOI‎: 10.1016/j.jpeds.2016.07.053

https://www.ncbi.nlm.nih.gov/pubmed/27574999 (opens new window)

Umbilical cord milking versus delayed cord clamping in preterm infants. (opens new window)

Katheria AC, Truong G, Cousins L, Oshiro B, Finer NN.

Source‎: Pediatrics 2015;136(1):61-9.

Indexed‎: PubMed 26122803

DOI‎: 10.1542/peds.2015-0368

https://www.ncbi.nlm.nih.gov/pubmed/26122803 (opens new window)

The effects of umbilical cord milking in extremely preterm infants: a randomized controlled trial. (opens new window)

March MI, Hacker MR, Parson AW, Modest AM, de Veciana M.

Source‎: J Perinatol 2013;33(10):763-7.

Indexed‎: PubMed 23867960

DOI‎: 10.1038/jp.2013.70

https://www.ncbi.nlm.nih.gov/pubmed/23867960 (opens new window)

Committee Opinion No. 684: Delayed umbilical cord clamping after birth. (opens new window)

Mascola MA, Porter TF, Chao TTM; Committee on Obstetric Practice.

Source‎: Obstet Gynecol 2017;129(1):e5-10.

Indexed‎: PubMed 28002310

DOI‎: 10.1097/AOG.0000000000001860

https://www.ncbi.nlm.nih.gov/pubmed/28002310 (opens new window)

Effect of timing of umbilical cord clamping of term infants on maternal and neonatal outcomes. (opens new window)

McDonald SJ, Middleton P, Dowswell T, Morris PS.

Source‎: Cochrane Database Syst Rev 2013;(7):CD004074.

Indexed‎: PubMed 23843134

DOI‎: 10.1002/14651858.CD004074.pub3

https://www.ncbi.nlm.nih.gov/pubmed/23843134 (opens new window)

Effects of delayed cord clamping in very-low-birth-weight infants. (opens new window)

Oh W, Fanaroff AA, Carlo WA, Donovan EF, McDonald SA, Poole WK; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network.

Source‎: J Perinatol 2011;31 Suppl 1:S68-71.

Indexed‎: PubMed 21448208

DOI‎: 10.1038/jp.2010.186

https://www.ncbi.nlm.nih.gov/pubmed/21448208 (opens new window)

Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes. (opens new window)

Rabe H, Diaz-Rossello JL, Duley L, Dowswell T.

Source‎: Cochrane Database Syst Rev 2012;(8):CD003248.

Indexed‎: PubMed 22895933

DOI‎: 10.1002/14651858.CD003248.pub3

https://www.ncbi.nlm.nih.gov/pubmed/22895933 (opens new window)

Milking compared with delayed cord clamping to increase placental transfusion in preterm neonates: a randomized controlled trial. (opens new window)

Rabe H, Jewison A, Alvarez RF, Crook D, Stilton D, Bradley R, Holden D; Brighton Perinatal Study Group.

Source‎: Obstet Gynecol 2011;117(2 Pt 1):205-11.

Indexed‎: PubMed 21252731

DOI‎: 10.1097/AOG.0b013e3181fe46ff

https://www.ncbi.nlm.nih.gov/pubmed/21252731 (opens new window)

Umbilical cord milking stabilizes cerebral oxygenation and perfusion in infants born before 29 weeks of gestation. (opens new window)

Takami T, Suganami Y, Sunohara D, Kondo A, Mizukaki N, Fujioka T, Hoshika A, Akutagawa O, Isaka K.

Source‎: J Pediatr 2012;161(4):742-7.

Indexed‎: PubMed 22578578

DOI‎: 10.1016/j.jpeds.2012.03.053

https://www.ncbi.nlm.nih.gov/pubmed/22578578 (opens new window)

Delayed cord clamping in preterm infants delivered at 34-36 weeks' gestation: a randomised controlled trial. (opens new window)

Ultee CA, van der Deure J, Swart J, Lasham C, van Baar AL.

Source‎: Arch Dis Child Fetal Neonatal Ed 2008;93(1):F20-3.

Indexed‎: PubMed 17307809

DOI‎: 10.1136/adc.2006.100354

https://www.ncbi.nlm.nih.gov/pubmed/17307809 (opens new window)

Effect of gravity on volume of placental transfusion: a multicentre, randomised, non-inferiority trial. (opens new window)

Vain NE, Satragno DS, Gorenstein AN, Gordillo JE, Berazategui JP, Alda MG, Prudent LM.

Source‎: Lancet 2014;384(9939):235-40.

Indexed‎: PubMed 24746755

DOI‎: 10.1016/S0140-6736(14)60197-5

https://www.ncbi.nlm.nih.gov/pubmed/24746755 (opens new window)

Delayed umbilical cord clamping for reducing anaemia in low birthweight infants: implications for developing countries. (opens new window)

van Rheenen PF, Gruschke S, Brabin BJ.

Source‎: Ann Trop Paediatr 2006;26(3):157-67.

Indexed‎: PubMed 16925952

DOI‎: 10.1179/146532806X120246

https://www.ncbi.nlm.nih.gov/pubmed/16925952 (opens new window)

Using Residual Cord Blood for Blood Tests

Using umbilical cord blood for the initial blood tests of VLBW neonates results in higher hemoglobin and fewer RBC transfusions. (opens new window)

Baer VL, Lambert DK, Carroll PD, Gerday E, Christensen RD.

Source‎: J Perinatol 2013;33(5):363-5.

Indexed‎: PubMed 23047426

DOI‎: 10.1038/jp.2012.127

https://www.ncbi.nlm.nih.gov/pubmed/23047426 (opens new window)

Cord blood sampling for neonatal admission laboratory testing-an evidence-based blood conservation strategy. (opens new window)

Bahr TM, Carroll PD

Source‎: Semin Perinatol. 2023;47(5):151786. Epub 2023 Jun 11.

Indexed‎: PubMed 37365044

DOI‎: 10.1016/j.semperi.2023.151786

https://pubmed.ncbi.nlm.nih.gov/37365044/ (opens new window)

Effect of umbilical cord blood sampling versus admission blood sampling on requirement of blood transfusion in extremely preterm infants: a randomized controlled trial. (opens new window)

Balasubramanian H, Malpani P, Sindhur M, Kabra NS, Ahmed J, Srinivasan L

Source‎: J Pediatr 2019;211:39-45.e2.

Indexed‎: PubMed 31113718

DOI‎: 10.1016/j.jpeds.2019.04.033

https://www.ncbi.nlm.nih.gov/pubmed/31113718 (opens new window)

Umbilical cord blood as a replacement source for admission complete blood count in premature infants. (opens new window)

Carroll PD, Nankervis CA, Iams J, Kelleher K.

Source‎: J Perinatol 2012;32(2):97-102.

Indexed‎: PubMed 21566570

DOI‎: 10.1038/jp.2011.60

https://www.ncbi.nlm.nih.gov/pubmed/21566570 (opens new window)

Postponing or eliminating red blood cell transfusions of very low birth weight neonates by obtaining all baseline laboratory blood tests from otherwise discarded fetal blood in the placenta. (opens new window)

Christensen RD, Lambert DK, Baer VL, Montgomery DP, Barney CK, Coulter DM, Ilstrup S, Bennett ST.

Source‎: Transfusion 2011;51(2):253-8.

Indexed‎: PubMed 20723166

DOI‎: 10.1111/j.1537-2995.2010.02827.x

https://www.ncbi.nlm.nih.gov/pubmed/20723166 (opens new window)

Erythropoiesis-Stimulating Agents

Iron supplementation for preterm infants receiving restrictive red blood cell transfusions: reassessment of practice safety. (opens new window)

Arnon S, Dolfin T, Bauer S, Regev RH, Litmanovitz I.

Source‎: J Perinatol 2010;30(11):736-40.

Indexed‎: PubMed 20220759

DOI‎: 10.1038/jp.2010.33

https://www.ncbi.nlm.nih.gov/pubmed/20220759 (opens new window)

Vitamin E levels during early iron supplementation in preterm infants. (opens new window)

Arnon S, Regev RH, Bauer S, Shainkin-Kestenbaum R, Shiff Y, Bental Y, Dolfin T, Litmanovitz I.

Source‎: Am J Perinatol 2009;26(5):387-92.

Indexed‎: PubMed 19263337

DOI‎: 10.1055/s-0029-1214233

https://www.ncbi.nlm.nih.gov/pubmed/19263337 (opens new window)

Erythropoietin concentrations and neurodevelopmental outcome in preterm infants. (opens new window)

Bierer R, Peceny MC, Hartenberger CH, Ohls RK.

Source‎: Pediatrics 2006;118(3):e635-40.

Indexed‎: PubMed 16908620

DOI‎: 10.1542/peds.2005-3186

https://www.ncbi.nlm.nih.gov/pubmed/16908620 (opens new window)

Higher cumulative doses of erythropoietin and developmental outcomes in preterm infants. (opens new window)

Brown MS, Eichorst D, Lala-Black B, Gonzalez R.

Source‎: Pediatrics 2009;124(4):e681-7.

Indexed‎: PubMed 19786428

DOI‎: 10.1542/peds.2008-2701

https://www.ncbi.nlm.nih.gov/pubmed/19786428 (opens new window)

Early erythropoietin administration does not increase the risk of retinopathy in preterm infants. (opens new window)

Chou HH, Chung MY, Zhou XG, Lin HC.

Source‎: Pediatr Neonatol 2017;58(1):48-56.

Indexed‎: PubMed 27346390

DOI‎: 10.1016/j.pedneo.2016.03.006

https://www.ncbi.nlm.nih.gov/pubmed/27346390 (opens new window)

How to administrate erythropoietin, intravenous or subcutaneous? (opens new window)

Costa S, Romagnoli C, Zuppa AA, Cota F, Scorrano A, Gallini F, Maggio L.

Source‎: Acta Paediatr 2013;102(6):579-83.

Indexed‎: PubMed 23414120

DOI‎: 10.1111/apa.12193

https://www.ncbi.nlm.nih.gov/pubmed/23414120 (opens new window)

An approach to using recombinant erythropoietin for neuroprotection in very preterm infants. (opens new window)

Fauchère JC, Dame C, Vonthein R, Koller B, Arri S, Wolf M, Bucher HU.

Source‎: Pediatrics 2008;122(2):375-82.

Indexed‎: PubMed 18676556

DOI‎: 10.1542/peds.2007-2591

https://www.ncbi.nlm.nih.gov/pubmed/18676556 (opens new window)

Safety of early high-dose recombinant erythropoietin for neuroprotection in very preterm infants. (opens new window)

Fauchère JC, Koller BM, Tschopp A, Dame C, Ruegger C, Bucher HU; Swiss Erythropoietin Neuroprotection Trial Group.

Source‎: J Pediatr 2015;167(1):52-7.e1-3.

Indexed‎: PubMed 25863661

DOI‎: 10.1016/j.jpeds.2015.02.052

https://www.ncbi.nlm.nih.gov/pubmed/25863661 (opens new window)

A randomized, controlled trial of the effects of adding vitamin B12 and folate to erythropoietin for the treatment of anemia of prematurity. (opens new window)

Haiden N, Klebermass K, Cardona F, Schwindt J, Berger A, Kohlhauser-Vollmuth C, Jilma B, Pollak A.

Source‎: Pediatrics 2006;118(1):180-8.

Indexed‎: PubMed 16818564

DOI‎: 10.1542/peds.2005-2475

https://www.ncbi.nlm.nih.gov/pubmed/16818564 (opens new window)

Effects of a combined therapy of erythropoietin, iron, folate, and vitamin B12 on the transfusion requirements of extremely low birth weight infants. (opens new window)

Haiden N, Schwindt J, Cardona F, Berger A, Klebermass K, Wald M, Kohlhauser-Vollmuth C, Jilma B, Pollak A.

Source‎: Pediatrics 2006;118(5):2004-13.

Indexed‎: PubMed 17079573

DOI‎: 10.1542/peds.2006-1113

https://www.ncbi.nlm.nih.gov/pubmed/17079573 (opens new window)

Early versus late enteral prophylactic iron supplementation in preterm very low birth weight infants: a randomised controlled trial. (opens new window)

Joy R, Krishnamurthy S, Bethou A, Rajappa M, Ananthanarayanan PH, Bhat BV.

Source‎: Arch Dis Child Fetal Neonatal Ed 2014;99(2):F105-9.

Indexed‎: PubMed 24302687

DOI‎: 10.1136/archdischild-2013-304650

https://www.ncbi.nlm.nih.gov/pubmed/24302687 (opens new window)

A phase I/II trial of high-dose erythropoietin in extremely low birth weight infants: pharmacokinetics and safety. (opens new window)

Juul SE, McPherson RJ, Bauer LA, Ledbetter KJ, Gleason CA, Mayock DE.

Source‎: Pediatrics 2008;122(2):383-91.

Indexed‎: PubMed 18676557

DOI‎: 10.1542/peds.2007-2711

https://www.ncbi.nlm.nih.gov/pubmed/18676557 (opens new window)

Effect of high-dose erythropoietin on blood transfusions in extremely low gestational age neonates: post hoc analysis of a randomized clinical trial. (opens new window)

Juul SE, Vu PT, Comstock BA, Wadhawan R, Mayock DE, Courtney SE, Robinson T, Ahmad KA, Bendel-Stenzel E, Baserga M, LaGamma EF, Downey LC, O'Shea M, Rao R, Fahim N, Lampland A, Frantz ID 3rd, Khan J, Weiss M, Gilmore MM, Ohls R, Srinivasan N, Perez JE, McKay V, Heagerty PJ; Preterm Erythropoietin Neuroprotection Trial Consortium

Source‎: JAMA Pediatr 2020;174(10):933-43.

Indexed‎: PubMed 32804205

DOI‎: 10.1001/jamapediatrics.2020.2271

https://www.ncbi.nlm.nih.gov/pubmed/32804205 (opens new window)

Association between early administration of high-dose erythropoietin in preterm infants and brain MRI abnormality at term-equivalent age. (opens new window)

Leuchter RH, Gui L, Poncet A, Hagmann C, Lodygensky GA, Martin E, Koller B, Darqué A, Bucher HU, Hüppi PS.

Source‎: JAMA 2014;312(8):817-24.

Indexed‎: PubMed 25157725

DOI‎: 10.1001/jama.2014.9645

https://www.ncbi.nlm.nih.gov/pubmed/25157725 (opens new window)

Outcomes of extremely low birth weight infants given early high-dose erythropoietin. (opens new window)

McAdams RM, McPherson RJ, Mayock DE, Juul SE.

Source‎: J Perinatol 2013;33(3):226-30.

Indexed‎: PubMed 22722674

DOI‎: 10.1038/jp.2012.78

https://www.ncbi.nlm.nih.gov/pubmed/22722674 (opens new window)

Enteral iron supplementation in preterm and low birth weight infants. (opens new window)

Mills RJ, Davies MW.

Source‎: Cochrane Database Syst Rev 2012;(3):CD005095.

Indexed‎: PubMed 22419305

DOI‎: 10.1002/14651858.CD005095.pub2

https://www.ncbi.nlm.nih.gov/pubmed/22419305 (opens new window)

A randomized, masked, placebo-controlled study of darbepoetin alfa in preterm infants. (opens new window)

Ohls RK, Christensen RD, Kamath-Rayne BD, Rosenberg A, Wiedmeier SE, Roohi M, Lacy CB, Lambert DK, Burnett JJ, Pruckler B, Schrader R, Lowe JR.

Source‎: Pediatrics 2013;132(1):e119-27.

Indexed‎: PubMed 23776118

DOI‎: 10.1542/peds.2013-0143

https://www.ncbi.nlm.nih.gov/pubmed/23776118 (opens new window)

Cognitive outcomes of preterm infants randomized to darbepoetin, erythropoietin, or placebo. (opens new window)

Ohls RK, Kamath-Rayne BD, Christensen RD, Wiedmeier SE, Rosenberg A, Fuller J, Lacy CB, Roohi M, Lambert DK, Burnett JJ, Pruckler B, Peceny H, Cannon DC, Lowe JR.

Source‎: Pediatrics 2014;133(6):1023-30.

Indexed‎: PubMed 24819566

DOI‎: 10.1542/peds.2013-4307

https://www.ncbi.nlm.nih.gov/pubmed/24819566 (opens new window)

A randomized, masked study of weekly erythropoietin dosing in preterm infants. (opens new window)

Ohls RK, Roohi M, Peceny HM, Schrader R, Bierer R.

Source‎: J Pediatr 2012;160(5):790-5.e1.

Indexed‎: PubMed 22137666

DOI‎: 10.1016/j.jpeds.2011.10.026

https://www.ncbi.nlm.nih.gov/pubmed/22137666 (opens new window)

Intravenous iron administration together with parenteral nutrition to very preterm Jehovah's Witness twins. (opens new window)

Poorisrisak P, Schroeder AM, Greisen G, Zachariassen G.

Source‎: BMJ Case Rep 2014;2014:bcr2013202167.

Indexed‎: PubMed 24891477

DOI‎: 10.1136/bcr-2013-202167

https://www.ncbi.nlm.nih.gov/pubmed/24891477 (opens new window)

Decrease in incidence of bronchopulmonary dysplasia with erythropoietin administration in preterm infants: a retrospective study. (opens new window)

Rayjada N, Barton L, Chan LS, Plasencia S, Biniwale M, Bui KC.

Source‎: Neonatology 2012;102(4):287-92.

Indexed‎: PubMed 22922736

DOI‎: 10.1159/000341615

https://www.ncbi.nlm.nih.gov/pubmed/22922736 (opens new window)

Use of recombinant human erythropoietin and risk of severe retinopathy in extremely low-birth-weight infants. (opens new window)

Schneider JK, Gardner DK, Cordero L.

Source‎: Pharmacotherapy 2008;28(11):1335-40.

Indexed‎: PubMed 18956993

DOI‎: 10.1592/phco.28.11.1335

https://www.ncbi.nlm.nih.gov/pubmed/18956993 (opens new window)

The effect of recombinant human erythropoietin on the development of retinopathy of prematurity. (opens new window)

Shah N, Jadav P, Jean-Baptiste D, Weedon J, Cohen LM, Kim MR.

Source‎: Am J Perinatol 2010;27(1):67-71.

Indexed‎: PubMed 19565433

DOI‎: 10.1055/s-0029-1224872

https://www.ncbi.nlm.nih.gov/pubmed/19565433 (opens new window)

Early erythropoietin influences both transfusion and ventilation need in very low birth weight infants. (opens new window)

Tempera A, Stival E, Piastra M, De Luca D, Ottaviano C, Tramontozzi P, Marconi M, Cafforio C, Marcozzi P, Rossi N, Buffone E.

Source‎: J Matern Fetal Neonatal Med 2011;24(8):1060-4.

Indexed‎: PubMed 21250913

DOI‎: 10.3109/14767058.2010.545917

https://www.ncbi.nlm.nih.gov/pubmed/21250913 (opens new window)

Erythropoietin prevents necrotizing enterocolitis in very preterm infants: a randomized controlled trial. (opens new window)

Wang Y, Song J, Sun H, Xu F, Li K, Nie C, Zhang X, Peng X, Xia L, Shen Z, Yuan X, Zhang S, Ding X, Zhang Y, Kang W, Qian L, Zhou W, Wang X, Cheng X, Zhu C

Source‎: J Transl Med 2020;18(1):308.

Indexed‎: PubMed 32771013

DOI‎: 10.1186/s12967-020-02459-w

https://www.ncbi.nlm.nih.gov/pubmed/32771013 (opens new window)

Erythropoietin and retinopathy of prematurity: a meta-analysis. (opens new window)

Xu XJ, Huang HY, Chen HL.

Source‎: Eur J Pediatr 2014;173(10):1355-64.

Indexed‎: PubMed 24849614

DOI‎: 10.1007/s00431-014-2332-4

https://www.ncbi.nlm.nih.gov/pubmed/24849614 (opens new window)

Effect of short-term recombinant human erythropoietin therapy in the prevention of anemia of prematurity in very low birth weight neonates. (opens new window)

Yasmeen BH, Chowdhury MA, Hoque MM, Hossain MM, Jahan R, Akhtar S.

Source‎: Bangladesh Med Res Counc Bull 2012;38(3):119-23.

Indexed‎: PubMed 23540189

https://www.ncbi.nlm.nih.gov/pubmed/23540189 (opens new window)

Tolerance of Anemia in Low-Birth-Weight Infants

Implementing a program to improve compliance with neonatal intensive care unit transfusion guidelines was accompanied by a reduction in transfusion rate: a pre-post analysis within a multihospital health care system. (opens new window)

Baer VL, Henry E, Lambert DK, Stoddard RA, Wiedmeier SE, Eggert LD, Ilstrup S, Christensen RD.

Source‎: Transfusion 2011;51(2):264-9.

Indexed‎: PubMed 20723168

DOI‎: 10.1111/j.1537-2995.2010.02823.x

https://www.ncbi.nlm.nih.gov/pubmed/20723168 (opens new window)

Restrictive guideline reduces platelet count thresholds for transfusions in very low birth weight preterm infants. (opens new window)

Borges JP, Dos Santos AM, da Cunha DH, Mimica AF, Guinsburg R, Kopelman BI.

Source‎: Vox Sang 2013;104(3):207-13.

Indexed‎: PubMed 23046429

DOI‎: 10.1111/j.1423-0410.2012.01658.x

https://www.ncbi.nlm.nih.gov/pubmed/23046429 (opens new window)

Effect of blood transfusions on the outcome of very low body weight preterm infants under two different transfusion criteria. (opens new window)

Chen HL, Tseng HI, Lu CC, Yang SN, Fan HC, Yang RC.

Source‎: Pediatr Neonatol 2009;50(3):110-6.

Indexed‎: PubMed 19579757

DOI‎: 10.1016/S1875-9572(09)60045-0

https://www.ncbi.nlm.nih.gov/pubmed/19579757 (opens new window)

Association of haematocrit and red blood cell transfusion with outcomes in infants with shunt-dependent pulmonary blood flow and univentricular physiology. (opens new window)

Dasgupta R, Parsons A, Mcclelland S, Morgan E, Robertson MJ, Noel TR, Schmitz ML, Rettiganti M, Gupta P.

Source‎: Blood Transfus 2015;13(3):417-22.

Indexed‎: PubMed 25545877

DOI‎: 10.2450/2014.0128-14

https://www.ncbi.nlm.nih.gov/pubmed/25545877 (opens new window)

Effects of liberal vs restrictive transfusion thresholds on survival and neurocognitive outcomes in extremely low-birth-weight infants: the ETTNO randomized clinical trial. (opens new window)

Franz AR, Engel C, Bassler D, Rüdiger M, Thome UH, Maier RF, Krägeloh-Mann I, Kron M, Essers J, Bührer C, Rellensmann G, Rossi R, Bittrich HJ, Roll C, Höhn T, Ehrhardt H, Avenarius S, Körner HT, Stein A, Buxmann H, Vochem M, Poets CF; ETTNO Investigators.

Source‎: JAMA 2020;324(6):560-70.

Indexed‎: PubMed 32780138

https://pubmed.ncbi.nlm.nih.gov/32780138/ (opens new window)

Resource implications of adopting a restrictive neonatal blood transfusion policy. (opens new window)

Harrison MC, Pillay S, Joolay Y, Rhoda N, Raban MS, Horn AR, Tooke L.

Source‎: S Afr Med J 2013;103(12):916-7.

Indexed‎: PubMed 24300628

https://www.ncbi.nlm.nih.gov/pubmed/24300628 (opens new window)

Adverse effects of red blood cell transfusions in neonates: a systematic review and meta-analysis. (opens new window)

Keir A, Pal S, Trivella M, Lieberman L, Callum J, Shehata N, Stanworth SJ.

Source‎: Transfusion 2016;56(11):2773-80.

Indexed‎: PubMed 27600435

DOI‎: 10.1111/trf.13785

https://www.ncbi.nlm.nih.gov/pubmed/27600435 (opens new window)

Higher or lower hemoglobin transfusion thresholds for preterm infants. (opens new window)

Kirpalani H, Bell EF, Hintz SR, Tan S, Schmidt B, Chaudhary AS, Johnson KJ, Crawford MM, Newman JE, Vohr BR, Carlo WA, D'Angio CT, Kennedy KA, Ohls RK, Poindexter BB, Schibler K, Whyte RK, Widness JA, Zupancic JAF, Wyckoff MH, Truog WE, Walsh MC, Chock VY, Laptook AR, Sokol GM, Yoder BA, Patel RM, Cotten CM, Carmen MF, Devaskar U, Chawla S, Seabrook R, Higgins RD, Das A; Eunice Kennedy Shriver NICHD Neonatal Research Network.

Source‎: N Engl J Med 2020;383(27):2639-51.

Indexed‎: PubMed 33382931

https://pubmed.ncbi.nlm.nih.gov/33382931/ (opens new window)

The premature infants in need of transfusion (PINT) study: A randomized, controlled trial of a restrictive (low) versus liberal (high) transfusion threshold for extremely low birth weight infants. (opens new window)

Kirpalani H, Whyte RK, Andersen C, Asztalos EV, Heddle N, Blajchman MA, Peliowski A, Rios A, Lacorte M, Connelly R, Barrington K, Roberts RS; PINT Investigators.

Source‎: J Pediatr 2006;149(3):301-7.

Indexed‎: PubMed 16939737

DOI‎: 10.1016/j.jpeds.2006.05.011

https://www.ncbi.nlm.nih.gov/pubmed/16939737 (opens new window)

Transfusion strategies for patients in pediatric intensive care units. (opens new window)

Lacroix J, Hébert PC, Hutchison JS, Hume HA, Tucci M, Ducruet T, Gauvin F, Collet JP, Toledano BJ, Robillard P, Joffe A, Biarent D, Meert K, Peters MJ; TRIPICU Investigators; Canadian Critical Care Trials Group; Pediatric Acute Lung Injury and Sepsis Investigators Network.

Source‎: N Engl J Med 2007;356(16):1609-19.

Indexed‎: PubMed 17442904

DOI‎: 10.1056/NEJMoa066240

https://www.ncbi.nlm.nih.gov/pubmed/17442904 (opens new window)

Neurocognitive profiles of preterm infants randomly assigned to lower or higher hematocrit thresholds for transfusion. (opens new window)

McCoy TE, Conrad AL, Richman LC, Lindgren SD, Nopoulos PC, Bell EF.

Source‎: Child Neuropsychol 2011;17(4):347-67.

Indexed‎: PubMed 21360360

DOI‎: 10.1080/09297049.2010.544647

https://www.ncbi.nlm.nih.gov/pubmed/21360360 (opens new window)

Effects of transfusions in extremely low birth weight infants: a retrospective study. (opens new window)

Valieva OA, Strandjord TP, Mayock DE, Juul SE.

Source‎: J Pediatr 2009;155(3):331-37.e1.

Indexed‎: PubMed 19732577

DOI‎: 10.1016/j.jpeds.2009.02.026

https://www.ncbi.nlm.nih.gov/pubmed/19732577 (opens new window)

Red blood cell transfusion in newborn infants. [Les transfusions de culot globulaire aux nouveau-nés.] [English, French] (opens new window)

Whyte RK, Jefferies AL; Canadian Paediatric Society, Fetus and Newborn Committee.

Source‎: Paediatr Child Health 2014;19(4):213-22.

Indexed‎: PubMed 24855419

https://www.ncbi.nlm.nih.gov/pubmed/24855419 (opens new window)

Neurodevelopmental outcome of extremely low birth weight infants randomly assigned to restrictive or liberal hemoglobin thresholds for blood transfusion. (opens new window)

Whyte RK, Kirpalani H, Asztalos EV, Andersen C, Blajchman M, Heddle N, Lacorte M, Robertson CM, Clarke MC, Vincer MJ, Doyle LW, Roberts RS; for the PINTOS Study Group.

Source‎: Pediatrics 2009;123(1):207-13.

Indexed‎: PubMed 19117884

DOI‎: 10.1542/peds.2008-0338

https://www.ncbi.nlm.nih.gov/pubmed/19117884 (opens new window)