Neonatal medisin
Behandling av anemi hos premature
Sen avnavling
Efficacy and safety of umbilical cord milking at birth: a systematic review and meta-analysis. (åpner nytt vindu)
Kilde: JAMA Pediatr 2015;169(1):18-25.
Arkiv: PubMed 25365246
DOI: 10.1001/jamapediatrics.2014.1906
https://www.ncbi.nlm.nih.gov/pubmed/25365246 (åpner nytt vindu)
Effects of umbilical cord milking on the need for packed red blood cell transfusions and early neonatal hemodynamic adaptation in preterm infants born ≤1500 g: a prospective, randomized, controlled trial. (åpner nytt vindu)
Kilde: J Pediatr Hematol Oncol 2014;36(8):e493-8.
Arkiv: PubMed 24633297
DOI: 10.1097/MPH.0000000000000143
https://www.ncbi.nlm.nih.gov/pubmed/24633297 (åpner nytt vindu)
Effect of delayed versus early umbilical cord clamping on neonatal outcomes and iron status at 4 months: a randomised controlled trial. (åpner nytt vindu)
Kilde: BMJ 2011;343:d7157.
Arkiv: PubMed 22089242
https://www.ncbi.nlm.nih.gov/pubmed/22089242 (åpner nytt vindu)
Early versus delayed umbilical cord clamping in infants with congenital heart disease: a pilot, randomized, controlled trial. (åpner nytt vindu)
Kilde: J Perinatol 2015;35(10):826-31.
Arkiv: PubMed 26226244
DOI: 10.1038/jp.2015.89
https://www.ncbi.nlm.nih.gov/pubmed/26226244 (åpner nytt vindu)
Placental transfusion strategies in very preterm neonates: a systematic review and meta-analysis. (åpner nytt vindu)
Kilde: Obstet Gynecol 2014;124(1):47-56.
Arkiv: PubMed 24901269
DOI: 10.1097/AOG.0000000000000324
https://www.ncbi.nlm.nih.gov/pubmed/24901269 (åpner nytt vindu)
Effect of delayed cord clamping on very preterm infants. (åpner nytt vindu)
Kilde: Am J Obstet Gynecol 2015;213(5):676.e1-7.
Arkiv: PubMed 26196456
DOI: 10.1016/j.ajog.2015.07.016
https://www.ncbi.nlm.nih.gov/pubmed/26196456 (åpner nytt vindu)
Whole-blood viscosity in the neonate: effects of gestational age, hematocrit, mean corpuscular volume and umbilical cord milking. (åpner nytt vindu)
Kilde: J Perinatol 2014;34(1):16-21.
Arkiv: PubMed 24030677
DOI: 10.1038/jp.2013.112
https://www.ncbi.nlm.nih.gov/pubmed/24030677 (åpner nytt vindu)
Umbilical cord milking reduces need for red cell transfusions and improves neonatal adaptation in preterm infants: meta-analysis. (åpner nytt vindu)
Kilde: J Obstet Gynaecol Res 2015;41(6):890-5.
Arkiv: PubMed 25656528
DOI: 10.1111/jog.12657
https://www.ncbi.nlm.nih.gov/pubmed/25656528 (åpner nytt vindu)
Umbilical cord milking in term infants delivered by cesarean section: a randomized controlled trial. (åpner nytt vindu)
Kilde: J Perinatol 2012;32(8):580-4.
Arkiv: PubMed 22094494
DOI: 10.1038/jp.2011.159
https://www.ncbi.nlm.nih.gov/pubmed/22094494 (åpner nytt vindu)
Early versus delayed cord clamping in term and preterm births: a review. (åpner nytt vindu)
Kilde: J Obstet Gynaecol Can 2012;34(6):525-31.
Arkiv: PubMed 22673168
https://www.ncbi.nlm.nih.gov/pubmed/22673168 (åpner nytt vindu)
Umbilical cord milking reduces the need for red cell transfusions and improves neonatal adaptation in infants born at less than 29 weeks' gestation: a randomised controlled trial. (åpner nytt vindu)
Kilde: Arch Dis Child Fetal Neonatal Ed 2008;93(1):F14-9.
Arkiv: PubMed 17234653
DOI: 10.1136/adc.2006.108902
https://www.ncbi.nlm.nih.gov/pubmed/17234653 (åpner nytt vindu)
Late vs early clamping of the umbilical cord in full-term neonates: systematic review and meta-analysis of controlled trials. (åpner nytt vindu)
Kilde: JAMA 2007;297(11):1241-52.
Arkiv: PubMed 17374818
DOI: 10.1001/jama.297.11.1241
https://www.ncbi.nlm.nih.gov/pubmed/17374818 (åpner nytt vindu)
Association of umbilical cord management strategies with outcomes of preterm infants: a systematic review and network meta-analysis. (åpner nytt vindu)
Kilde: JAMA Pediatr 2021;175(4):e210102.
Arkiv: PubMed 33683307
DOI: 10.1001/jamapediatrics.2021.0102
https://www.ncbi.nlm.nih.gov/pubmed/33683307 (åpner nytt vindu)
Clamp late and maintain perfusion (CLAMP) policy: delayed cord clamping in preterm infants. (åpner nytt vindu)
Kilde: J Matern Fetal Neonatal Med 2016;29(11):1705-9.
Arkiv: PubMed 26135773
DOI: 10.3109/14767058.2015.1061496
https://www.ncbi.nlm.nih.gov/pubmed/26135773 (åpner nytt vindu)
Delayed umbilical cord clamping in premature neonates. (åpner nytt vindu)
Kilde: Obstet Gynecol 2012;120(2 Pt 1):325-30.
Arkiv: PubMed 22825092
DOI: 10.1097/AOG.0b013e31825f269f
https://www.ncbi.nlm.nih.gov/pubmed/22825092 (åpner nytt vindu)
Neonatal resuscitation with an intact cord: a randomized clinical trial. (åpner nytt vindu)
Kilde: J Pediatr 2016;178:75-80.e3.
Arkiv: PubMed 27574999
DOI: 10.1016/j.jpeds.2016.07.053
https://www.ncbi.nlm.nih.gov/pubmed/27574999 (åpner nytt vindu)
Umbilical cord milking versus delayed cord clamping in preterm infants. (åpner nytt vindu)
Kilde: Pediatrics 2015;136(1):61-9.
Arkiv: PubMed 26122803
DOI: 10.1542/peds.2015-0368
https://www.ncbi.nlm.nih.gov/pubmed/26122803 (åpner nytt vindu)
The effects of umbilical cord milking in extremely preterm infants: a randomized controlled trial. (åpner nytt vindu)
Kilde: J Perinatol 2013;33(10):763-7.
Arkiv: PubMed 23867960
DOI: 10.1038/jp.2013.70
https://www.ncbi.nlm.nih.gov/pubmed/23867960 (åpner nytt vindu)
Committee Opinion No. 684: Delayed umbilical cord clamping after birth. (åpner nytt vindu)
Kilde: Obstet Gynecol 2017;129(1):e5-10.
Arkiv: PubMed 28002310
DOI: 10.1097/AOG.0000000000001860
https://www.ncbi.nlm.nih.gov/pubmed/28002310 (åpner nytt vindu)
Effect of timing of umbilical cord clamping of term infants on maternal and neonatal outcomes. (åpner nytt vindu)
Kilde: Cochrane Database Syst Rev 2013;(7):CD004074.
Arkiv: PubMed 23843134
DOI: 10.1002/14651858.CD004074.pub3
https://www.ncbi.nlm.nih.gov/pubmed/23843134 (åpner nytt vindu)
Seven-month developmental outcomes of very low birth weight infants enrolled in a randomized controlled trial of delayed versus immediate cord clamping. (åpner nytt vindu)
Kilde: J Perinatol 2010;30(1):11-6.
Arkiv: PubMed 19847185
DOI: 10.1038/jp.2009.170
https://www.ncbi.nlm.nih.gov/pubmed/19847185 (åpner nytt vindu)
Effects of delayed cord clamping in very-low-birth-weight infants. (åpner nytt vindu)
Kilde: J Perinatol 2011;31 Suppl 1:S68-71.
Arkiv: PubMed 21448208
DOI: 10.1038/jp.2010.186
https://www.ncbi.nlm.nih.gov/pubmed/21448208 (åpner nytt vindu)
Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes. (åpner nytt vindu)
Kilde: Cochrane Database Syst Rev 2012;(8):CD003248.
Arkiv: PubMed 22895933
DOI: 10.1002/14651858.CD003248.pub3
https://www.ncbi.nlm.nih.gov/pubmed/22895933 (åpner nytt vindu)
Milking compared with delayed cord clamping to increase placental transfusion in preterm neonates: a randomized controlled trial. (åpner nytt vindu)
Kilde: Obstet Gynecol 2011;117(2 Pt 1):205-11.
Arkiv: PubMed 21252731
DOI: 10.1097/AOG.0b013e3181fe46ff
https://www.ncbi.nlm.nih.gov/pubmed/21252731 (åpner nytt vindu)
Umbilical cord milking stabilizes cerebral oxygenation and perfusion in infants born before 29 weeks of gestation. (åpner nytt vindu)
Kilde: J Pediatr 2012;161(4):742-7.
Arkiv: PubMed 22578578
DOI: 10.1016/j.jpeds.2012.03.053
https://www.ncbi.nlm.nih.gov/pubmed/22578578 (åpner nytt vindu)
Delayed cord clamping in preterm infants delivered at 34-36 weeks' gestation: a randomised controlled trial. (åpner nytt vindu)
Kilde: Arch Dis Child Fetal Neonatal Ed 2008;93(1):F20-3.
Arkiv: PubMed 17307809
DOI: 10.1136/adc.2006.100354
https://www.ncbi.nlm.nih.gov/pubmed/17307809 (åpner nytt vindu)
Effect of gravity on volume of placental transfusion: a multicentre, randomised, non-inferiority trial. (åpner nytt vindu)
Kilde: Lancet 2014;384(9939):235-40.
Arkiv: PubMed 24746755
DOI: 10.1016/S0140-6736(14)60197-5
https://www.ncbi.nlm.nih.gov/pubmed/24746755 (åpner nytt vindu)
Delayed umbilical cord clamping for reducing anaemia in low birthweight infants: implications for developing countries. (åpner nytt vindu)
Kilde: Ann Trop Paediatr 2006;26(3):157-67.
Arkiv: PubMed 16925952
DOI: 10.1179/146532806X120246
https://www.ncbi.nlm.nih.gov/pubmed/16925952 (åpner nytt vindu)
Bruk av gjenværende navlestrengsblod til blodprøver
Using umbilical cord blood for the initial blood tests of VLBW neonates results in higher hemoglobin and fewer RBC transfusions. (åpner nytt vindu)
Kilde: J Perinatol 2013;33(5):363-5.
Arkiv: PubMed 23047426
DOI: 10.1038/jp.2012.127
https://www.ncbi.nlm.nih.gov/pubmed/23047426 (åpner nytt vindu)
Cord blood sampling for neonatal admission laboratory testing-an evidence-based blood conservation strategy. (åpner nytt vindu)
Kilde: Semin Perinatol. 2023;47(5):151786. Epub 2023 Jun 11.
Arkiv: PubMed 37365044
DOI: 10.1016/j.semperi.2023.151786
https://pubmed.ncbi.nlm.nih.gov/37365044/ (åpner nytt vindu)
Effect of umbilical cord blood sampling versus admission blood sampling on requirement of blood transfusion in extremely preterm infants: a randomized controlled trial. (åpner nytt vindu)
Kilde: J Pediatr 2019;211:39-45.e2.
Arkiv: PubMed 31113718
DOI: 10.1016/j.jpeds.2019.04.033
https://www.ncbi.nlm.nih.gov/pubmed/31113718 (åpner nytt vindu)
Umbilical cord blood as a replacement source for admission complete blood count in premature infants. (åpner nytt vindu)
Kilde: J Perinatol 2012;32(2):97-102.
Arkiv: PubMed 21566570
DOI: 10.1038/jp.2011.60
https://www.ncbi.nlm.nih.gov/pubmed/21566570 (åpner nytt vindu)
Postponing or eliminating red blood cell transfusions of very low birth weight neonates by obtaining all baseline laboratory blood tests from otherwise discarded fetal blood in the placenta. (åpner nytt vindu)
Kilde: Transfusion 2011;51(2):253-8.
Arkiv: PubMed 20723166
DOI: 10.1111/j.1537-2995.2010.02827.x
https://www.ncbi.nlm.nih.gov/pubmed/20723166 (åpner nytt vindu)
Erytropoiese-stimulerende midler
Iron supplementation for preterm infants receiving restrictive red blood cell transfusions: reassessment of practice safety. (åpner nytt vindu)
Kilde: J Perinatol 2010;30(11):736-40.
Arkiv: PubMed 20220759
DOI: 10.1038/jp.2010.33
https://www.ncbi.nlm.nih.gov/pubmed/20220759 (åpner nytt vindu)
Vitamin E levels during early iron supplementation in preterm infants. (åpner nytt vindu)
Kilde: Am J Perinatol 2009;26(5):387-92.
Arkiv: PubMed 19263337
DOI: 10.1055/s-0029-1214233
https://www.ncbi.nlm.nih.gov/pubmed/19263337 (åpner nytt vindu)
Erythropoietin concentrations and neurodevelopmental outcome in preterm infants. (åpner nytt vindu)
Kilde: Pediatrics 2006;118(3):e635-40.
Arkiv: PubMed 16908620
DOI: 10.1542/peds.2005-3186
https://www.ncbi.nlm.nih.gov/pubmed/16908620 (åpner nytt vindu)
Higher cumulative doses of erythropoietin and developmental outcomes in preterm infants. (åpner nytt vindu)
Kilde: Pediatrics 2009;124(4):e681-7.
Arkiv: PubMed 19786428
DOI: 10.1542/peds.2008-2701
https://www.ncbi.nlm.nih.gov/pubmed/19786428 (åpner nytt vindu)
Iron supplementation enhances response to high doses of recombinant human erythropoietin in preterm infants. (åpner nytt vindu)
Kilde: Arch Dis Child Fetal Neonatal Ed 1998;79(1):F44-8.
Arkiv: PubMed 9797624
https://www.ncbi.nlm.nih.gov/pubmed/9797624 (åpner nytt vindu)
Early erythropoietin administration does not increase the risk of retinopathy in preterm infants. (åpner nytt vindu)
Kilde: Pediatr Neonatol 2017;58(1):48-56.
Arkiv: PubMed 27346390
DOI: 10.1016/j.pedneo.2016.03.006
https://www.ncbi.nlm.nih.gov/pubmed/27346390 (åpner nytt vindu)
How to administrate erythropoietin, intravenous or subcutaneous? (åpner nytt vindu)
Kilde: Acta Paediatr 2013;102(6):579-83.
Arkiv: PubMed 23414120
DOI: 10.1111/apa.12193
https://www.ncbi.nlm.nih.gov/pubmed/23414120 (åpner nytt vindu)
An approach to using recombinant erythropoietin for neuroprotection in very preterm infants. (åpner nytt vindu)
Kilde: Pediatrics 2008;122(2):375-82.
Arkiv: PubMed 18676556
DOI: 10.1542/peds.2007-2591
https://www.ncbi.nlm.nih.gov/pubmed/18676556 (åpner nytt vindu)
Safety of early high-dose recombinant erythropoietin for neuroprotection in very preterm infants. (åpner nytt vindu)
Kilde: J Pediatr 2015;167(1):52-7.e1-3.
Arkiv: PubMed 25863661
DOI: 10.1016/j.jpeds.2015.02.052
https://www.ncbi.nlm.nih.gov/pubmed/25863661 (åpner nytt vindu)
A randomized, controlled trial of the effects of adding vitamin B12 and folate to erythropoietin for the treatment of anemia of prematurity. (åpner nytt vindu)
Kilde: Pediatrics 2006;118(1):180-8.
Arkiv: PubMed 16818564
DOI: 10.1542/peds.2005-2475
https://www.ncbi.nlm.nih.gov/pubmed/16818564 (åpner nytt vindu)
Effects of a combined therapy of erythropoietin, iron, folate, and vitamin B12 on the transfusion requirements of extremely low birth weight infants. (åpner nytt vindu)
Kilde: Pediatrics 2006;118(5):2004-13.
Arkiv: PubMed 17079573
DOI: 10.1542/peds.2006-1113
https://www.ncbi.nlm.nih.gov/pubmed/17079573 (åpner nytt vindu)
Early versus late enteral prophylactic iron supplementation in preterm very low birth weight infants: a randomised controlled trial. (åpner nytt vindu)
Kilde: Arch Dis Child Fetal Neonatal Ed 2014;99(2):F105-9.
Arkiv: PubMed 24302687
DOI: 10.1136/archdischild-2013-304650
https://www.ncbi.nlm.nih.gov/pubmed/24302687 (åpner nytt vindu)
A phase I/II trial of high-dose erythropoietin in extremely low birth weight infants: pharmacokinetics and safety. (åpner nytt vindu)
Kilde: Pediatrics 2008;122(2):383-91.
Arkiv: PubMed 18676557
DOI: 10.1542/peds.2007-2711
https://www.ncbi.nlm.nih.gov/pubmed/18676557 (åpner nytt vindu)
Effect of high-dose erythropoietin on blood transfusions in extremely low gestational age neonates: post hoc analysis of a randomized clinical trial. (åpner nytt vindu)
Kilde: JAMA Pediatr 2020;174(10):933-43.
Arkiv: PubMed 32804205
DOI: 10.1001/jamapediatrics.2020.2271
https://www.ncbi.nlm.nih.gov/pubmed/32804205 (åpner nytt vindu)
Association between early administration of high-dose erythropoietin in preterm infants and brain MRI abnormality at term-equivalent age. (åpner nytt vindu)
Kilde: JAMA 2014;312(8):817-24.
Arkiv: PubMed 25157725
DOI: 10.1001/jama.2014.9645
https://www.ncbi.nlm.nih.gov/pubmed/25157725 (åpner nytt vindu)
L'érythropoïétine humaine recombinante chez le nouveau-né : recommandations pour la pratique clinique de la Société française de néonatologie. [Recombinant human erythropoietin in neonates: guidelines for clinical practice from the French Society of Neonatology.] [French] (åpner nytt vindu)
Kilde: Arch Pediatr 2015;22(10):1092-7.
Arkiv: PubMed 26320680
DOI: 10.1016/j.arcped.2015.07.001
https://www.ncbi.nlm.nih.gov/pubmed/26320680 (åpner nytt vindu)
Outcomes of extremely low birth weight infants given early high-dose erythropoietin. (åpner nytt vindu)
Kilde: J Perinatol 2013;33(3):226-30.
Arkiv: PubMed 22722674
DOI: 10.1038/jp.2012.78
https://www.ncbi.nlm.nih.gov/pubmed/22722674 (åpner nytt vindu)
Enteral iron supplementation in preterm and low birth weight infants. (åpner nytt vindu)
Kilde: Cochrane Database Syst Rev 2012;(3):CD005095.
Arkiv: PubMed 22419305
DOI: 10.1002/14651858.CD005095.pub2
https://www.ncbi.nlm.nih.gov/pubmed/22419305 (åpner nytt vindu)
The use of erythropoietin-stimulating agents versus supportive care in newborns with hereditary spherocytosis: a single centre's experience. (åpner nytt vindu)
Kilde: Eur J Haematol 2014;93(2):161-4.
Arkiv: PubMed 24660843
DOI: 10.1111/ejh.12321
https://www.ncbi.nlm.nih.gov/pubmed/24660843 (åpner nytt vindu)
A randomized, masked, placebo-controlled study of darbepoetin alfa in preterm infants. (åpner nytt vindu)
Kilde: Pediatrics 2013;132(1):e119-27.
Arkiv: PubMed 23776118
DOI: 10.1542/peds.2013-0143
https://www.ncbi.nlm.nih.gov/pubmed/23776118 (åpner nytt vindu)
Cognitive outcomes of preterm infants randomized to darbepoetin, erythropoietin, or placebo. (åpner nytt vindu)
Kilde: Pediatrics 2014;133(6):1023-30.
Arkiv: PubMed 24819566
DOI: 10.1542/peds.2013-4307
https://www.ncbi.nlm.nih.gov/pubmed/24819566 (åpner nytt vindu)
A randomized, masked study of weekly erythropoietin dosing in preterm infants. (åpner nytt vindu)
Kilde: J Pediatr 2012;160(5):790-5.e1.
Arkiv: PubMed 22137666
DOI: 10.1016/j.jpeds.2011.10.026
https://www.ncbi.nlm.nih.gov/pubmed/22137666 (åpner nytt vindu)
Intravenous iron administration together with parenteral nutrition to very preterm Jehovah's Witness twins. (åpner nytt vindu)
Kilde: BMJ Case Rep 2014;2014:bcr2013202167.
Arkiv: PubMed 24891477
DOI: 10.1136/bcr-2013-202167
https://www.ncbi.nlm.nih.gov/pubmed/24891477 (åpner nytt vindu)
Decrease in incidence of bronchopulmonary dysplasia with erythropoietin administration in preterm infants: a retrospective study. (åpner nytt vindu)
Kilde: Neonatology 2012;102(4):287-92.
Arkiv: PubMed 22922736
DOI: 10.1159/000341615
https://www.ncbi.nlm.nih.gov/pubmed/22922736 (åpner nytt vindu)
Pharmacodynamically optimized erythropoietin treatment combined with phlebotomy reduction predicted to eliminate blood transfusions in selected preterm infants. (åpner nytt vindu)
Kilde: Pediatr Res 2014;75(2):336-42.
Arkiv: PubMed 24216541
DOI: 10.1038/pr.2013.213
https://www.ncbi.nlm.nih.gov/pubmed/24216541 (åpner nytt vindu)
Use of recombinant human erythropoietin and risk of severe retinopathy in extremely low-birth-weight infants. (åpner nytt vindu)
Kilde: Pharmacotherapy 2008;28(11):1335-40.
Arkiv: PubMed 18956993
DOI: 10.1592/phco.28.11.1335
https://www.ncbi.nlm.nih.gov/pubmed/18956993 (åpner nytt vindu)
The effect of recombinant human erythropoietin on the development of retinopathy of prematurity. (åpner nytt vindu)
Kilde: Am J Perinatol 2010;27(1):67-71.
Arkiv: PubMed 19565433
DOI: 10.1055/s-0029-1224872
https://www.ncbi.nlm.nih.gov/pubmed/19565433 (åpner nytt vindu)
Early erythropoietin influences both transfusion and ventilation need in very low birth weight infants. (åpner nytt vindu)
Kilde: J Matern Fetal Neonatal Med 2011;24(8):1060-4.
Arkiv: PubMed 21250913
DOI: 10.3109/14767058.2010.545917
https://www.ncbi.nlm.nih.gov/pubmed/21250913 (åpner nytt vindu)
Erythropoietin prevents necrotizing enterocolitis in very preterm infants: a randomized controlled trial. (åpner nytt vindu)
Kilde: J Transl Med 2020;18(1):308.
Arkiv: PubMed 32771013
DOI: 10.1186/s12967-020-02459-w
https://www.ncbi.nlm.nih.gov/pubmed/32771013 (åpner nytt vindu)
Erythropoietin and retinopathy of prematurity: a meta-analysis. (åpner nytt vindu)
Kilde: Eur J Pediatr 2014;173(10):1355-64.
Arkiv: PubMed 24849614
DOI: 10.1007/s00431-014-2332-4
https://www.ncbi.nlm.nih.gov/pubmed/24849614 (åpner nytt vindu)
Effect of short-term recombinant human erythropoietin therapy in the prevention of anemia of prematurity in very low birth weight neonates. (åpner nytt vindu)
Kilde: Bangladesh Med Res Counc Bull 2012;38(3):119-23.
Arkiv: PubMed 23540189
https://www.ncbi.nlm.nih.gov/pubmed/23540189 (åpner nytt vindu)
Tolerering av anemi hos nyfødte med lav fødselsvekt
Implementing a program to improve compliance with neonatal intensive care unit transfusion guidelines was accompanied by a reduction in transfusion rate: a pre-post analysis within a multihospital health care system. (åpner nytt vindu)
Kilde: Transfusion 2011;51(2):264-9.
Arkiv: PubMed 20723168
DOI: 10.1111/j.1537-2995.2010.02823.x
https://www.ncbi.nlm.nih.gov/pubmed/20723168 (åpner nytt vindu)
Restrictive versus liberal red blood cell transfusion strategies for preterm infants: a systematic review of randomized controlled trials. (åpner nytt vindu)
Kilde: Curr Pediatr Rev 2008;4(3):143-50.
Arkiv: EMBASE 2008503179
Red cell transfusion thresholds for preterm infants: finally some answers. (åpner nytt vindu)
Kilde: Arch Dis Child Fetal Neonatal Ed 2022;107(2):126-30.
Arkiv: PubMed 33906941
https://pubmed.ncbi.nlm.nih.gov/33906941/ (åpner nytt vindu)
Restrictive guideline reduces platelet count thresholds for transfusions in very low birth weight preterm infants. (åpner nytt vindu)
Kilde: Vox Sang 2013;104(3):207-13.
Arkiv: PubMed 23046429
DOI: 10.1111/j.1423-0410.2012.01658.x
https://www.ncbi.nlm.nih.gov/pubmed/23046429 (åpner nytt vindu)
Effect of blood transfusions on the outcome of very low body weight preterm infants under two different transfusion criteria. (åpner nytt vindu)
Kilde: Pediatr Neonatol 2009;50(3):110-6.
Arkiv: PubMed 19579757
DOI: 10.1016/S1875-9572(09)60045-0
https://www.ncbi.nlm.nih.gov/pubmed/19579757 (åpner nytt vindu)
Unique risks of red blood cell transfusions in very-low-birth-weight neonates: associations between early transfusion and intraventricular hemorrhage and between late transfusion and necrotizing enterocolitis. (åpner nytt vindu)
Kilde: J Matern Fetal Neonatal Med 2013;26 Suppl 2:60-3.
Arkiv: PubMed 24059555
DOI: 10.3109/14767058.2013.830495
https://www.ncbi.nlm.nih.gov/pubmed/24059555 (åpner nytt vindu)
Association of haematocrit and red blood cell transfusion with outcomes in infants with shunt-dependent pulmonary blood flow and univentricular physiology. (åpner nytt vindu)
Kilde: Blood Transfus 2015;13(3):417-22.
Arkiv: PubMed 25545877
DOI: 10.2450/2014.0128-14
https://www.ncbi.nlm.nih.gov/pubmed/25545877 (åpner nytt vindu)
Effects of liberal vs restrictive transfusion thresholds on survival and neurocognitive outcomes in extremely low-birth-weight infants: the ETTNO randomized clinical trial. (åpner nytt vindu)
Kilde: JAMA 2020;324(6):560-70.
Arkiv: PubMed 32780138
https://pubmed.ncbi.nlm.nih.gov/32780138/ (åpner nytt vindu)
Resource implications of adopting a restrictive neonatal blood transfusion policy. (åpner nytt vindu)
Kilde: S Afr Med J 2013;103(12):916-7.
Arkiv: PubMed 24300628
https://www.ncbi.nlm.nih.gov/pubmed/24300628 (åpner nytt vindu)
Restrictive versus liberal red blood cell transfusion thresholds in very low birth weight infants: a systematic review and meta-analysis. (åpner nytt vindu)
Kilde: J Paediatr Child Health 2014;50(2):122-30.
Arkiv: PubMed 24118127
DOI: 10.1111/jpc.12409
https://www.ncbi.nlm.nih.gov/pubmed/24118127 (åpner nytt vindu)
Adverse effects of red blood cell transfusions in neonates: a systematic review and meta-analysis. (åpner nytt vindu)
Kilde: Transfusion 2016;56(11):2773-80.
Arkiv: PubMed 27600435
DOI: 10.1111/trf.13785
https://www.ncbi.nlm.nih.gov/pubmed/27600435 (åpner nytt vindu)
Higher or lower hemoglobin transfusion thresholds for preterm infants. (åpner nytt vindu)
Kilde: N Engl J Med 2020;383(27):2639-51.
Arkiv: PubMed 33382931
https://pubmed.ncbi.nlm.nih.gov/33382931/ (åpner nytt vindu)
The premature infants in need of transfusion (PINT) study: A randomized, controlled trial of a restrictive (low) versus liberal (high) transfusion threshold for extremely low birth weight infants. (åpner nytt vindu)
Kilde: J Pediatr 2006;149(3):301-7.
Arkiv: PubMed 16939737
DOI: 10.1016/j.jpeds.2006.05.011
https://www.ncbi.nlm.nih.gov/pubmed/16939737 (åpner nytt vindu)
Transfusion strategies for patients in pediatric intensive care units. (åpner nytt vindu)
Kilde: N Engl J Med 2007;356(16):1609-19.
Arkiv: PubMed 17442904
DOI: 10.1056/NEJMoa066240
https://www.ncbi.nlm.nih.gov/pubmed/17442904 (åpner nytt vindu)
Neurocognitive profiles of preterm infants randomly assigned to lower or higher hematocrit thresholds for transfusion. (åpner nytt vindu)
Kilde: Child Neuropsychol 2011;17(4):347-67.
Arkiv: PubMed 21360360
DOI: 10.1080/09297049.2010.544647
https://www.ncbi.nlm.nih.gov/pubmed/21360360 (åpner nytt vindu)
Effects of transfusions in extremely low birth weight infants: a retrospective study. (åpner nytt vindu)
Kilde: J Pediatr 2009;155(3):331-37.e1.
Arkiv: PubMed 19732577
DOI: 10.1016/j.jpeds.2009.02.026
https://www.ncbi.nlm.nih.gov/pubmed/19732577 (åpner nytt vindu)
Red blood cell transfusion in newborn infants. [Les transfusions de culot globulaire aux nouveau-nés.] [English, French] (åpner nytt vindu)
Kilde: Paediatr Child Health 2014;19(4):213-22.
Arkiv: PubMed 24855419
https://www.ncbi.nlm.nih.gov/pubmed/24855419 (åpner nytt vindu)
Neurodevelopmental outcome of extremely low birth weight infants randomly assigned to restrictive or liberal hemoglobin thresholds for blood transfusion. (åpner nytt vindu)
Kilde: Pediatrics 2009;123(1):207-13.
Arkiv: PubMed 19117884
DOI: 10.1542/peds.2008-0338
https://www.ncbi.nlm.nih.gov/pubmed/19117884 (åpner nytt vindu)